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Abstract

The present work deals with the effects of kinematics on the natural frequencies and modal damping of laminated

composite plates. Three theories are considered, the classical laminated plate theory (CLPT), the first-order shear

deformation theory (FSDT) and the third-order shear deformation theory (TSDT). The displacement field corresponding

to a simply supported square laminated composite plate is introduced in the energy equation. The governing equations are

then formulated for the laminated composite plates using the Hamiltonian principle. Equations of motion are established

and then the harmonic free vibrations are studied. The complex frequencies are obtained from the characteristic equation,

which gives the natural frequencies and the modal damping for each ðm; nÞ mode. The effects of stacking sequence, rotary

inertia and thickness to side ratio ðh=aÞ on the natural frequencies and modal damping ratios are analyzed. The results lead

to conclusions about the applicability of each of the plate theories CLPT, FSDT and HSDT.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Natural frequencies and modal damping are important parameters for the dynamic analysis of structures. A
large amount of analytical and experimental research has concentrated on the evaluation of dynamic
properties of viscoelastically reinforced composite materials as used in laminated plates [1–7]. A review of the
literature shows that the dynamic properties of composite laminated plates depend on many parameters such
as displacement field, rotary inertia, stacking sequence and thickness to side ratio, etc. In predicting the
behavior of laminated plates, many theories have been developed as discussed below. The classical laminated
plate theory (CLPT) was developed by Cauchy, Poisson and Kirchhoff. The basic assumption of this theory is
that the normal to the midplane before deformation remains straight and normal to the plane after
deformation. This assumption implies that the transverse shear deformation in the thickness direction of the
plate is ignored. Based on the CLPT, Leung and Zhou [8] studied the vibration and stability problem of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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composite laminated plates by using the dynamic stiffness matrix method. Ohta et al. [9] presented the
damping analysis of fiber-reinforced plastic laminated composite plates. The maximum strain and kinetic
energies of a cross-ply laminated plate were evaluated analytically based on the 3D theory of elasticity. Reddy
and Kuppusamy [10] developed a finite-element scheme based on 3D elasticity. However, as the authors
pointed out, the computational expense precludes the use of such 3D elements in problems that require a large
number of elements. Huang and Dasgupta [11] proposed a semi-analytical 3D layerwise theory to solve
various orders of natural frequencies and mode shapes of thick arbitrarily laminated composite cylindrical
panels.

These studies showed that the CLPT yields inaccurate results for laminated thick plates and overe-
stimates natural frequencies because of the assumption that the transverse shear stiffness of plates is
infinite.

Lin et al. [12] and Alam and Asnani [13] later proposed the first-order transverse shear deformation
theory (FSDT), which is based on the Mindlin–Reissner plate theory. The basic assumption of this
theory is that the normal to the midplane before deformation remains straight but not normal to the
midplane after deformation. FSDT takes into account the transverse shear deformation in the
thickness direction of the plate. Using FSDT, Wang et al. [14] developed a meshless approach based on
reproducing the kernel particle method for the flexural, free vibration and buckling analysis of laminated
composite plates. Bert and Chen [15] and Reddy [16] developed closed-form and finite-element solutions for
the free vibration of simply supported antisymmetric angle-ply laminated plates. However, FSDT was
found reliable only for predicting low-frequency behavior of moderately thick composite laminated plates; see
Ref. [17].

Reddy [10] proposed a third-order shear deformation theory (TSDT) using a displacement field with cubic
variations with respect to the thickness direction, which yields a parabolic transverse shear stress distribution.
TSDT was used by Khdeir [18] for free vibration analysis of crossply laminated plates. Koo [19] studied the
effects of layerwise in-plane displacements on the fundamental frequencies and the specific damping capacity
of composite laminated plates. Zhou et al. [20] analyzed the free vibration of thick isotropic and laminated
composite rectangular plates, with point supports, using the finite layer method. Meunier and Shenoi [21]
have developed an analytical method based on Reddy’s refined high-order shear deformation theory to
determine the natural frequencies and modal damping of specific fiber-reinforced plastic sandwich plates.
Ostachowicz et al. [22] studied the influence of shape memory alloy (SMA) fibers on changes in
natural frequencies and thermal buckling of a composite laminated plate with SMA. An analytical method
introduced by Hufenbach et al. [23] has a clear advantage in the design of composite laminated cylindrical
shells. Qian et al. [24] presented a method for identifying elastic and damping properties of composite
laminates from vibration test data. The analysis model is established based on a finite-element model
that accounts for the effects of transverse shear deformation and hysteretic damping. Yarlagadda and
Lesieutre [25] have developed analytical method using a higher-order shear laminate theory and
the Rayleigh–Ritz method to determine the effects of changes in ply orientation, temperature and thickness
of the laminate on natural frequencies and damping of flexural vibration of continuous fiber-reinforced
composite panels. Using a finite-element idealization, Pervez and Zabaras [26] presented the linear transient
dynamic and damping analysis of laminated anisotropic composite plates. The obtained experimental results
for unidirectional composite beams are used to predict the damping capacity of the studied plates. Makhecha
et al. [27], using a formulation based on the finite-element procedure, have studied the effects of higher-
order theory, that accounts for the realistic variation of the in-plane and transverse displacements
through the thickness, on the modal damping and natural frequencies of thick composite laminated sandwich
plates.

This paper presents an analytical method using CLPT, FSDT and TSDT theories to analyze the natural
frequencies and modal damping of square laminated composite plates. The effects of displacement fields,
rotary inertia, stacking sequence and thickness to side ratio ðh=aÞ are studied. For each displacement field
(CLPT, FSDT and TSDT) the Hamiltonian principle is used to derive the governing equations. Theses
equations are applied to the simply supported (on all edges) square laminated composite plate in order to
compute the complex natural frequencies. Finally, the validity of the assumption of deformations and the
applicability of the plate theories CLPT, FSDT and TSDT are discussed.
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2. Analytical equations

Consider a simply supported laminated composite square plate of total thickness h, side a and N layers. In
the present analysis, the origin of the orthonormal coordinate system ðx; y; zÞ is chosen at the mid-surface of
the laminated plate as shown in Fig. 1. The displacements of the plate in the x; y and z directions are denoted
by u; v and w, respectively.

2.1. Displacements fields of the three used theories

2.1.1. CLPT

This theory is based on the Cauchy, Poisson and Kirchhoff assumptions which maintain that the normal to
the midplane before deformation remains normal after deformation. Then the displacement field in the ðx; y; zÞ
reference frame has the following form:

UðMÞ ¼

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

u0ðx; y; tÞ � z
qw0

qx

v0ðx; y; tÞ � z
qw0

qy

w0ðx; y; tÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (1)

where Mðx; y; zÞ is a point of the laminated plate, the plane ðx; y; z ¼ 0Þ coincides with the mid-surface of the
laminated plate and the z direction is the out of plane coordinate normal to the mid-surface. The
displacements ðu0; v0;w0Þ are those of a point on the midplane.

2.1.2. FSDT

The FSDT is based on the Mindlin–Reissner plate theory where the transverse normal to the mid-surface
does not remain so after deformation. This introduces transverse shear stress. The field displacement in the
ðx; y; zÞ coordinate system is given by

UðMÞ ¼

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8><
>:

9>=
>; ¼

u0ðx; y; tÞ þ zfxðx; y; tÞ

v0ðx; y; tÞ þ zfyðx; y; tÞ

w0ðx; y; tÞ

8><
>:

9>=
>;, (2)

where Mðx; y; zÞ and ðu0; v0;w0Þ are as defined above and fx and fy are rotations around the x- and y-axis,
respectively.

2.1.3. TSDT

Based on the same assumptions as the CLPT and FSDT, Reddy [1,10] proposed the TSDT theory using a
displacement field with cubic variations in the coordinate along the thickness direction. This yields a parabolic
transverse shear stress distribution across each layer. The displacement field, in the ðx; y; zÞ coordinate frame is
x,u 

y,v z,w 

a 

h 

h k 

o 

Fig. 1. Geometry and coordinates system of a multilayer composite plate.
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given by

UðMÞ ¼

uðx; y; z; tÞ

vðx; y; z; tÞ

wðx; y; z; tÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

u0ðx; y; tÞ þ zfxðx; y; tÞ � z3c1 fx þ
qw0

qx

� �

v0ðx; y; tÞ þ zfyðx; y; tÞ � z3c1 fy þ
qw0

qy

� �
w0ðx; y; tÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (3)

where c1 ¼ ð4=3h2
Þ and Mðx; y; zÞ, ðu0; v0;w0Þ, fx and fy are as defined above.

2.2. Laminate constitutive equations

2.2.1. Stress strain relation in the kth layer

The elastic isothermal stress–strain relations of the kth orthotropic layer of the composite laminate as
shown in Fig. 2, are given in the local ð1; 2; 3Þ cartesian coordinate system by

s1
s2
s4
s5
s6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

2
6666664

3
7777775

ðkÞ
�1

�2

�4

�5

�6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (4)

where Qij are the elastic coefficients calculated using Young’s modulus, shear modulus and Poisson’s ratios of
the laminate composite plate, defined by

Q11 ¼
E1

ð1� n12n21Þ
; Q22 ¼

E2

ð1� n12n21Þ
; Q12 ¼

n12E2

ð1� n12n21Þ
, (5)

Q44 ¼ G23; Q55 ¼ G13; Q66 ¼ G12. (6)

For orthotropic configurations the Q16, Q26 and Q45 terms vanish. For a lamina of plates with ply angle y,
the transformed elastic constants Q̄ij expressions are given in Appendix A.

2.2.2. Behavior laws of the laminate plate

The constitutive equations that relate the force and moment resultants to the laminate stresses are given by

Nab

Mab

Pab

8><
>:

9>=
>; ¼

Z h=2

�h=2
sab

1

z

z3

8><
>:

9>=
>;dz, (7)

Qa

Ra

( )
¼

Z h=2

�h=2
saz

1

z2

� �
dz, (8)
y 12

x
O

θ

θ

Fig. 2. Fiber orientation of the kth orthotropic layer.
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where the subscripts a and b take on the values x and y, ðNxx;Nyy;NxyÞ and ðQx;QyÞ are components of the
resultants forces Nab and Qa, respectively. ðMxx;Myy;MxyÞ are components of the resultants moments Mab,
ðPxx;Pyy;PxyÞ and ðRx;RyÞ denote the higher-order stress resultants, which are relevant only for TSDT.

The constitutive equations of a laminate that relate the force and moment resultants N, P and M to the
strains (eð0Þ, eð1Þ and eð3Þ) are deduced from the equations in appendix B as follows.

N

M

P

8><
>:

9>=
>; ¼

A B E

B D F

E F H

2
64

3
75

eð0Þ

eð1Þ

eð3Þ

8><
>:

9>=
>; (9)

and

Q

R

� �
¼

A D

D F

� �
cð0Þ

cð2Þ

( )
, (10)

where the coefficients of the 3� 3 and symmetric matrices A, B, D, E, F, and H of the laminate are defined by

Aij

Bij

Dij

Eij

F ij

Hij

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼
XN

k¼1

Z zkþ1

zk

Q̄
ðkÞ

ij

1

z

z2

z3

z4

z6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

dz (11)

k is the layer number and the Q̄ij are defined in Appendix A.
For symmetric composite plates, the coupling stiffness matrix terms Bij as well as higher-order terms Eij are

reduced to zero. The Q44 and Q55 terms characterize the shear distribution over the composite thickness in the
23 and 13 planes, respectively.

2.2.3. Equations of motion

The evaluation of the natural frequencies of the composite laminate plate is based on the Hamiltonian
principle. The displacements ðu0; v0;w0Þ of a point on the midplane are introduced to satisfy the boundary
conditions given in Appendix C. The resulting equations of motion can be written in a matrix form in terms of
the generalized displacement vector X as

M €Xþ K�X ¼ 0, (12)

whereM is the mass matrix, K� is the complex stiffness matrix and XT ¼ fumn; vmn;wmn;X mn;Y mng as defined in
Appendix C.

The study of harmonic free vibrations leads to solve the characteristic equation

jK� � o2Mj ¼ 0. (13)

The complex natural frequency solutions o�ðm; nÞ of Eq. (13) are given by

ðo�ðm; nÞÞ2 ¼ pðm; nÞ þ jqðm; nÞ ¼ pðm; nÞð1þ jZðm; nÞÞ, (14)

where the ðm; nÞ modal damping Zðm; nÞ is given by

Zðm; nÞ ¼ pðm; nÞ=qðm; nÞ (15)

and the real natural frequency oðm; nÞ is given by

oðm; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm; nÞ

p
. (16)



ARTICLE IN PRESS
M. Soula et al. / Journal of Sound and Vibration 297 (2006) 315–328320
For simplicity, the frequencies are expressed in the non-dimensional form

$ðm; nÞ ¼ oðm; nÞðða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
Þ. (17)

3. Numerical results and analysis

In this section the dynamic behavior of a simply supported cross ply graphite epoxy laminated square plates
is investigated. The effects of the kinematics, rotary inertia, stacking sequence and thickness to side ratio ðh=aÞ

on the natural frequencies and modal damping ratios are studied.
The stacking sequence is expressed by using the notation ½y1=y2=y3=y4= . . .�. For example ½0=90=90=0�

denote a four-layered symmetric plate which has fiber angles 0�; 90�; 90� and 0� successively from lower to
upper layers in the plate.

The mechanical properties of the graphite epoxy are given by E1=E2 ¼ 20, G12=E2 ¼ 0:65, G13 ¼ G12,
G23=E2 ¼ 0:5, n12 ¼ 0:25, Z1 ¼ 0:0015, Z2 ¼ 0:01 and Z12 ¼ Z13 ¼ 0:016 (Suffix 1 and 2 denote the kth fiber
direction and the in-plane orthogonal direction, respectively as shown in Fig. 2).

3.1. Analysis of the effects of the rotary inertia (RI)

Figs. 3–6 show the effects of the rotary inertia on natural frequency and modal damping. Taking into
account RI has an effect of decreasing the natural frequency especially at high-order mode. For the natural
frequency, the difference between the cases with and without RI is within 3% for symmetric laminated plate
and 4% for antisymmetric plate using CLPT. However, this difference is within 1.2% for symmetric plate and
1.4% for antisymmetric plate for the shear theories. These results are calculated for mode (4,4) and this
difference increases with the mode order. For the CLPT, taking into account the RI has no effect on modal
damping across all modes as shown in Figs. 3b–6b. Whereas, for shear theories a slight decrease in modal
Fig. 3. (a) The effects of rotary inertia (RI) and displacement field on natural frequency at low mode ð1; 1Þ for h=a ¼ 0:05 and symmetric

laminated plates ½0�=90�=90�=0��: , with RI; , without RI. (b) The effects of rotary inertia(RI) and displacement field on modal

damping at low mode ð1; 1Þ for h=a ¼ 0:05 and symmetric laminated plates ½0�=90�=90�=0��: , with RI; , without RI.

Fig. 4. (a) The effects of rotary inertia (RI) and displacement field on natural frequency at higher-order mode ð4; 4Þ for h=a ¼ 0:05 and

symmetric laminated plates ½0�=90�=90�=0��: , with RI; , without RI. (b) The effects of rotary inertia (RI) and displacement field on

modal damping at higher-order mode ð4; 4Þ for h=a ¼ 0:05 and symmetric laminated plates ½0�=90�=90�=0��: , with RI; , without RI.
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Fig. 5. (a) The effects of rotary inertia (RI) and displacement field on natural frequency at low mode ð1; 1Þ for h=a ¼ 0:05 and

antisymmetric laminated plates ½0�=90�=0�=90��: , with RI; , without RI. (b) The effects of rotary inertia (RI) and displacement field on

modal damping at low mode ð1; 1Þ for h=a ¼ 0:05 and antisymmetric laminated plates ½0�=90�=0�=90��: , with RI; , without RI.

Fig. 6. (a) The effects of rotary inertia (RI) and displacement field on natural frequency at higher-order mode ð4; 4Þ for h=a ¼ 0:05 and

antisymmetric laminated plates ½0�=90�=0�=90��: , with RI; , without RI. (b) The effects of rotary inertia (RI) and displacement field on

modal damping at higher-order mode ð4; 4Þ for h=a ¼ 0:05 and antisymmetric laminated plates ½0�=90�=0�=90��: , with RI; , without RI.

Fig. 7. (a) The effects of the displacement field and order of modes on natural frequency for symmetric laminated plate ½0�=90�=90�=0��,
h=a ¼ 0:05 and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT. (b) The effects of the displacement field and order of modes

on modal damping for symmetric laminated plate ½0�=90�=90�=0��, h=a ¼ 0:05 and without rotary inertia (RI): E, CLPT; ’, FSDT; m,

TSDT.

Fig. 8. (a) The effects of the displacement field and order of modes on natural frequency for antisymmetric laminated plate

½0�=90�=0�=90�� and h=a ¼ 0:05 and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT. (b) The effects of the displacement field

and order of modes on modal damping for antisymmetric laminated plate ½0�=90�=0�=90�� and h=a ¼ 0:05 and without rotary inertia (RI):

E, CLPT; ’, FSDT; m, TSDT.

M. Soula et al. / Journal of Sound and Vibration 297 (2006) 315–328 321
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Fig. 9. (a) The effects of staking sequence and displacement field on natural frequency at low mode ð1; 1Þ for h=a ¼ 0:05 and without

rotary inertia (RI): , CLPT; , FSDT; , TSDT. (b) The effects of staking sequence and displacement field on modal damping at low

mode ð1; 1Þ for h=a ¼ 0:05 and without rotary inertia (RI): , CLPT; , FSDT; , TSDT.

Fig. 10. (a) The effects of staking sequence and displacement field on natural frequency at higher-order mode ð4; 4Þ for h=a ¼ 0:05 and

without rotary inertia (RI): , CLPT; , FSDT; , TSDT. (b) The effects of staking sequence and displacement field on modal damping at

higher-order mode ð4; 4Þ for h=a ¼ 0:05 and without rotary inertia (RI): , CLPT; , FSDT; , TSDT.

M. Soula et al. / Journal of Sound and Vibration 297 (2006) 315–328322
damping is observed only for higher-order modes. This difference is within 3.4% for antisymmetric plate and
1.4% for symmetric plates. These results indicate that RI decreases natural frequency and modal damping at
higher modes especially for shear theories and antisymmetric composite laminated plates (Figs. 7 and 8).

3.2. Analysis of the stacking sequence effects

Figs. 9a and 10a show that the natural frequencies are more important for the antisymmetric laminate plate
½0=90=0=90� than for the symmetric laminate plate ½0=90=90=0�. Figs. 9b and 10b show that the stacking
sequence has no effect on the modal damping for CLPT. While, for FSDT and TSDT, the modal damping is
higher, for the symmetric laminate plate, from 10% for mode ð1; 1Þ to 20% for the ð4; 4Þ mode. For a
symmetric laminate plate, the effect of warping on the modal damping is small. However, for the
antisymmetric laminate plate, warping increases the modal damping at higher-order modes.

The difference in natural frequency results obtained from the three theories (CLPT, CFDT, TSDT)
for thin plates and at low modes are negligible for symmetric laminated plates as shown in Figs. 11 and 13.
This is to be expected since there are no coupling effects (extension-flexure and extension-warping), i.e.
(Bij ¼ Eij ¼ 0 for i; j ¼ 1; 2; 6). In the case of antisymmetric laminated plates this difference is more
pronounced. This is due to the coupling effects between extensional and flexural deformation expressed by
the coefficients Bij of the matrix B of Eq. (9) and the coupling effects between extensional and
warping deformation expressed by the coefficients Eij of the matrix E of Eq. (9). It should be noted that
the difference in natural frequencies obtained from the three theories decrease as the number of layers
increases (see Ref. [1]).

3.3. Analysis of the thickness ratio effects

Figs. 11–14 show that using the CLPT, the thickness to side ratio has a small effect on natural frequency.
The difference between the results given for h=a ¼ 0:0120:05 is found to be less than 3%. The thickness to side
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Fig. 11. (a) The effects of thickness to side ratio ðh=aÞ and displacement field on natural frequency for symmetric laminated plate

½0�=90�=90�=0�� and at low mode ð1; 1Þ, and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT. (b) The effects of thickness to

side ratio ðh=aÞ and displacement field on modal damping for symmetric laminated plate ½0�=90�=90�=0�� and at low mode ð1; 1Þ and
without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT.

Fig. 12. (a) The effects of thickness to side ratio ðh=aÞ and displacement field on natural frequency for symmetric laminated plate

½0�=90�=90�=0�� at higher-order mode ð4; 4Þ, and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT. (b) The effects of thickness

to side ratio ðh=aÞ and displacement field on modal damping for symmetric laminated plate ½0�=90�=90�=0�� at higher-order mode ð4; 4Þ and
without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT.

Fig. 13. (a) The effects of thickness to side ratio ðh=aÞ and displacement field on natural frequency for antisymmetric laminated plate

½0�=90�=0�=90�� at low mode ð1; 1Þ and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT. (b) The effects of thickness to side

ratio ðh=aÞ and displacement field on modal damping for antisymmetric laminated plate ½0�=90�=0�=90�� at low mode ð1; 1Þ and without

rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT.

M. Soula et al. / Journal of Sound and Vibration 297 (2006) 315–328 323
ratio has no effect on modal damping. When using FSDT and TSDT, it is noted that an increase in thickness
to side ratio leads to a decrease in the natural frequency and an increase in the modal damping. The reduction
of the natural frequency results given for h=a ¼ 0:0120:05, are found to be less than 3% for lower modes (1.1)
and they are within 30% for higher-order modes (4.4). However, the increase in modal damping for h=a ¼

0:0120:05 are found to be, for lower modes (1.1), within 23% for symmetric laminated plates and within 13%
for antisymmetric laminated plates.

For high modes (4.4), the modal damping results are within 137% for symmetric laminated plates and
within 113% for antisymmetric laminated plates.
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Fig. 14. (a) The effects of thickness to side ratio ðh=aÞ and displacement field on natural frequency for antisymmetric laminated plate

½0�=90�=0�=90�� at higher-order mode ð4; 4Þ and without rotary inertia (RI):E, CLPT;’, FSDT; m, TSDT. (b) The effects of thickness to

side ratio ðh=aÞ and displacement field on modal damping for antisymmetric laminated plate ½0�=90�=0�=90�� at higher-order mode ð4; 4Þ
and without rotary inertia (RI): E, CLPT; ’, FSDT; m, TSDT.

M. Soula et al. / Journal of Sound and Vibration 297 (2006) 315–328324
3.4. Analysis of kinematic effects

In this section, results are found using a thickness side ratio h=a ¼ 0:05 and rotary inertia effects are not
considered.

Figs. 7 and 8 show that taking into account the shear strain decreases the natural frequency and increases
the modal damping especially for higher-order modes and antisymmetric plates.

For symmetric plates, this difference in natural frequency is within 3% for mode (1,1) and 10% for mode
ð1; 10Þ and in modal damping, it is for the considered tow modes, within 25% and 176% respectively.
However, for antisymmetric plates, the difference in natural frequency is within 2% for mode ð1; 1Þ and 50%
for mode ð1; 10Þ and in modal damping, theses results became 14.3% and 568%, respectively.

Figs. 7b and 8b show that the modal damping obtained using CLPT is smaller that of FSDT or TSDT. The
modal damping decreases with the mode order for CLPT while it increases for the FSDT and TSDT models.

If warping is taken into account, this will decrease natural frequency and increase modal damping especially
for higher-order modes and antisymmetric plates. The difference, in natural frequency, is within 0.1% from
the mode (1.1) to 3% for the (1.10) mode for symmetric plates, but these results become 2.3% and 2%,
respectively for antisymmetric plates. For damping, the difference is within 3% for mode ð1; 1Þ and 11% for
mode ð1; 10Þ for symmetric plates. However these results give 3% for mode ð1; 1Þ and 360% for mode ð1; 10Þ
and antisymmetric plates. It is also seen that the shear strain has more influence than the warping.

4. Conclusion

The analytical methods presented in this paper allow the prediction of natural frequencies and modal
damping of laminated composite symmetric and antisymmetric plates. Three plates theories CLPT, FSDT and
TSDT are used. The effect of rotary inertia, stacking sequence, and thickness to side ratio ðh=aÞ on the natural
frequencies and modal damping ratios are studied for these displacement fields. It is found that the modal
damping is higher for antisymmetric laminated plates than for symmetric laminated plates. These results was
showed by Pervez and Zabaras [26] for an other material and by an other method. The natural frequencies are
also higher for antisymmetric laminated plates than for symmetric laminated plates. These results depended on
the number of layers of the laminate as indicated in Ref. [1].

The effect of rotary inertia increase with order of modes. This is more significant when the shear
deformation is neglected. The CLPT overestimates natural frequencies and underestimate modal damping,
this phenomena increases with the order of mode. Therefore, this theory can be used only at low-order modes.
This means that shear deformation cannot be neglected with increasing mode order. The FSDT and TSDT
predict higher modal damping and lower natural frequencies especially at higher-order modes. This
phenomena is more noticeable with increasing thickness to side ratio ðh=aÞ and especially for antisymmetric
composite plates. It is also noted that FSDT and TSDT predict similar results for h=ao0:05. However, for the
thick plates, the warping must be considered especially for higher-order modes and especially for
antisymmetric plates.
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Appendix A

For a lamina of plates with ply angle y Fig. 2, the transformed elastic constants Q̄ij are given by

Q̄11 ¼ Q11 cos
4 yþQ22 sin

4 yþ 2ðQ12 þ 2Q66Þ cos
2 y sin2 y,

Q̄12 ¼ ðQ11 þQ22 � 4Q66Þ cos
2 y sin2 yþQ12ðcos

4 yþ sin4 yÞ,

Q̄22 ¼ Q11 sin
4 yþQ22 cos

4 yþ 2ðQ12 þ 2Q66Þ cos
2 y sin2 y,

Q̄16 ¼ ðQ11 �Q12 � 2Q66Þ cos
3 y sin yþ ðQ12 �Q22 þ 2Q66Þ cos y sin

3 y,

Q̄26 ¼ ðQ11 �Q12 � 2Q66Þ cos y sin
3 yþ ðQ12 �Q22 þ 2Q66Þ cos

3 y sin y,

Q̄66 ¼ ðQ11 þQ22 � 2Q12 � 2Q66Þ cos
2 y sin2 yþQ66ðcos

4 yþ sin4 yÞ,

Q̄44 ¼ Q44 cos
2 yþQ55 sin

2 y,

Q̄45 ¼ ðQ55 �Q44Þ cos y sin y,

Q̄55 ¼ Q55 cos
2 yþQ44 sin

2 y. (A.1)

Appendix B
1.
 The strains associated with the displacement field of CLPT are given by

e ¼ eð0Þ þ zeð1Þ, (B.1)

eð0Þ ¼

�ð0Þxx

�ð0Þyy

�ð0Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

qu0

qx
qv0

qy

qu0

qy
þ

qv0

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (B.2)

eð1Þ ¼

�ð1Þxx

�ð1Þyy

gð1Þxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

�q2w0

qx2

�q2w0

qy2

�2
q2w0

qxqy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, (B.3)

where eð0Þ and eð1Þ are the membrane and bending strains vectors, respectively.

2.
 The strains associated with the displacement field of FSDT are given by,

e ¼ eð0Þ þ zeð1Þ, (B.4)
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c ¼ cð0Þ, (B.5)

eð0Þ ¼

�ð0Þxx

�ð0Þyy

gð0Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

qu0

qx
qv0

qy

qu0

qy
þ

qv0

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (B.6)

eð1Þ ¼

�ð1Þxx

�ð1Þyy

gð1Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

qfx

qx
qfy

qy

qfx

qy
þ

qfy

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (B.7)

cð0Þ ¼

gð0Þyz

gð0Þxz

8>><
>>:

9>>=
>>; ¼

fy þ
qw0

qy

fx þ
qw0

qx

8>><
>>:

9>>=
>>;, (B.8)

where eð0Þ and eð1Þ are the vectors of the membrane and bending strains, respectively, and gxy ¼ 2�xy,
gxz ¼ 2�xz, gyz ¼ 2�yz.
3.
 The strains associated with the displacement field of TSDT are given by

e ¼ eð0Þ þ zeð1Þ þ z3eð3Þ, (B.9)

c ¼ cð0Þ þ z2cð2Þ, (B.10)

eð0Þ ¼

�ð0Þxx

�ð0Þyy

gð0Þxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

qu0

qx
þ

1

2

q2w0

qx2

qv0

qy
þ

1

2

q2w0

qx2

qu0

qy
þ

qv0

qx
þ

qw0

qx

qw0

qy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, (B.11)

eð1Þ ¼

�ð1Þxx

�ð1Þyy

gð1Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

qfx

qx
qfy

qy

qfx

qy
þ

qfy

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (B.12)

eð3Þ ¼

�ð3Þxx

�ð3Þyy

gð3Þxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼ �c1

qfx

qx
þ

q2w0

qx2

qfy

qy
þ

q2w0

qy2

qfx

qy
þ

qfy

qx
þ 2

q2w0

qxqy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, (B.13)
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cð0Þ ¼

gð0Þyz

gð0Þxz

8>><
>>:

9>>=
>>; ¼

fy þ
qw0

qy

fx þ
qw0

qx

8>><
>>:

9>>=
>>;, (B.14)

cð2Þ ¼

gð2Þyz

gð2Þxz

8>><
>>:

9>>=
>>; ¼ �c2

fy þ
qw0

qy

fx þ
qw0

qx

8>><
>>:

9>>=
>>;. (B.15)

Here c2 ¼ 3c1 and eð0Þ, eð1Þ and eð3Þ are the vectors of the membrane, bending and warping strains,
respectively.

Appendix C

The boundary conditions for a laminated plate simply supported on all edges are written as

u0ðx; 0; tÞ ¼ 0; w0ð0; y; tÞ ¼ 0,

u0ðx; a; tÞ ¼ 0; w0ða; y; tÞ ¼ 0,

v0ð0; y; tÞ ¼ 0; w0ðx; 0; tÞ ¼ 0,

v0ða; y; tÞ ¼ 0; w0ðx; a; tÞ ¼ 0, (C.1)

qw0

qx
ðx; 0; tÞ ¼ 0;

qw0

qy
ð0; y; tÞ ¼ 0,

qw0

qx
ðx; a; tÞ ¼ 0;

qw0

qy
ða; y; tÞ ¼ 0,

fyð0; y; tÞ ¼ 0; fxðx; 0; tÞ ¼ 0,

fyða; y; tÞ ¼ 0; fxðx; a; tÞ ¼ 0. (C.2)

To satisfy the boundary conditions, the displacements are expressed as follows

u0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

umnðtÞ cosðaxÞ sinðbyÞ,

v0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

vmnðtÞ sinðaxÞ cosðbyÞ,

w0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

wmnðtÞ sinðaxÞ cosðbyÞ,

fxðx; y; tÞ ¼
X1
n¼1

X1
m¼1

X mnðtÞ cosðaxÞ sinðbyÞ,

fyðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Y mnðtÞ sinðaxÞ cosðbyÞ. (C.3)
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Here a ¼ pm=a and b ¼ pn=a where m and n are the half wavenumbers in the x and y directions,
respectively, and XT ¼ fumn; vmn;wmn;X mn;Y mng is the unknown generalized displacement vector for the ðm; nÞ
mode.
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